Running head: MaliPuty Technical Report

m Universidade
¢ Europeia

u LAUREATE IMTEEMATIONAL UNMNEREITIES

Maliputy Technical Report
Robin v. Grinsven,

NHTV/ IADE/ Europiade.

MaliPuty Technical report

Contents

A D S AT ettt ettt e ettt ettt ee ettt eeeeeeeeettteaeaaeeataetetaeannaaeateeeatatannnanaateeannnnnnnnnesennnns

Maliputy TeChniCal ReDOIt. cuueueun et eeiiiiee e e et ettt eeeeeee et seteeenaaaeseeeseeanensesennssesannaaesennsaas

Game SOIWATE TEQUITIIIENTS. ceituueuueesseeeettueeenaeeeeeeereueeesnaaaeseeeeaneeasnnsaeseeeeennnennasesesnsserennsenens

FUNCtIoNal 1 QUITEIMENTS. ... iiiiiiiieeneeseseeteeuuenneeesseeeeeeeannnsassseesesannnnnnesssesennesesennssesennssesnns

GAMEDIAY . eeeeeeeeeeeeeieee ettt et e e eeeeeeeeeeeeeeeeee e e e e e e e eeeeeeeeeeeeeeeeesereeeteeeeereeeeeeeereenaesseeees

SerVEr ClIENT, ceeieiiieeeeeieeetieeeeeet ettt e et e eeeeeeeeeeeeeeeeeeeeereeeeeeeeeeereeeererereressnaeseeeeeennnaess

Non Functional reqUITEIMENTS. .. . eeeeieeeeeeteeeeeteeeeeeeeeeeeteeenaaesaaeeeseensaeeeenseeeenaaesennaaesens

S O W AT . ettt ettt e ettt eeeeee s e e et et aaaaaseeeseueennnaaaseeeesenannnnnassaceeereanaseanenass

N O W O K ettt e ettt e e et e ettt eeaassaeeesueennnaaeseeeesnnennnnnassseesennsssennasesennaserenn

Pl O T NIANCE. ittt iteeeee s sttt ettt seeeseseeettueannnnessseessnsnnnnnnnsssseesssnnnnnnnssesannsssean

Blueprint fUNCHIONS. ceeeeeerereeereeeeeeeeetete ettt e e eeeteeererer e ererer et rereeererereraaeeeeeeerennaeseeeees

DI O ACTION . sttt ettt ettt ettt ettt ettt et ettt e et et ettt et ettt et ettt ettt ettt e ettt e et et eeeeeeeeeeeeenennnaeeess

GaAME SOIWATIE QESION . it ietiiieee e e e et et eeeee s e et e ettt aaaesaeeesteeeenaaaaaseeasseeennnasaasaeeeennaaesennas

SO W aAIE AIC I e O UL . . it iiitie s e ettt e e st e et ettt eaeeseseaatteatenaaaseseeessuannnnnasasesenasesnanasaas

COAINE Sttt ittt s ettt teeeeesseeeeiteansnaaesseeeesueennnaasseseesseennnnnsesennsesasnseesanasaas

BlUe DI I TN STVt iiiiiiiiiiieeeeseeeetiteuesaeesseeeetseuensnaeesseeeesannnnssnssseeessesnnnnnnseseeesssnnnns

S Y S IMNS ettt eeeeereeee ettt eeeeeee e et eeeetee et et e e et e et b e e bbb et e et et e br et et e be e te b e e

RPS SVSTOIM . 1t tiiieuennieeteieeetereiieeteeeeetereaeeeteeeeeresseaeeeeseeerersnnaeeeeeeeerersrenaaeeeesenseeeennesees

IMaAtC M KT . ettt e e e et eetieeeaeeseeeeateeennaaasaaeeeseennnnnasaaaeeaseennnnnasane

MaliPuty Technical report

1AM CTEAtION. cuveeeeereeeerereeteriieeeeieteet e eeet e eee e eeeteeee e eeseeeeereseeeeeeeier e eeireeee 7
Server handeling. . ..evueeeeuereeiereiieieiiiieiieieiitiieeeiset et e reie e 7
Game sOftware programming......eeeeeeeeeeeeenerieeereeieriiiereeiereeeeeeiieeesteeaserreeeeiieeereenneeee 7
BIUCPIINS. teuveiieeiiieiiiiiiieiiiitiietiittes et et ee e ees ettt et et et 7
MACKING. ettt ettt ettt ee e e e e 7

I tETACHION. ettt 7
HUD ..ottt 7
CAt BlUCPIINES. ettt 7
RPS SYSteIM.ceeveeeeereereneinniineineiiniinneieiineieeieieneineiieiineieeineeineieeieiineiecine e 7
Peer t0 Peer MeSSA@INEG. .oeuueeeieeieiiiieiiiiiiiieiitiiieestiit et et ee it it es e e 7

ot S TV ettt ettt e eeesee et et e e eeeseeeeeeeeeeeeeseseteeeeebeeesrsnneeeeeseeeersnnnaneeernns 7
DAt SITUC UL, e teii ettt e et e ettt ettt eeseeteaeeeetaneseesennaseetennaseeennnsseanannaseeennnassansanen 7
MatCh MAKIN . ..ttt e e et ettt eeseeeeseeeeteeuenaaeasaeeeeeeennnnaaseeeeennasesennaaesennas 7

T aAS . ittt s ettt ettt saeeeseeesetteuennaaasesesesaeannnnnasssessunnssesennsenannseseanasane 7

MaliPuty Technical report

Abstract
This document covers the programming side of the project. How design is implemented. And

how the code works.

MaliPuty Technical report

Maliputy Technical Report

Maliputy Is a student project that gives the first experience to coders to make a
multiplayer project. Where there is a server client structure for match making and a peer to
peer connection for in the game time.

Game Software Requirements

Functional requirement

Gameplay

Player need to be able to walk across the map. Collect items and put them in a machine.

Falling of the map makes the players respawn at Spawn point.

The items beat each other in a rock paper scissor.

The level can have many traps. These traps help to make the game more enticing and
make the player think more.

Feedback

Good feedback is important for this game. It is the deciding factor of what the player

needs to think about what they need to guess and wat is a given.

In the game you see the machine state and the countering items.

Server Client

For this project we needed to make a client server matchmaking this should define who is

going to play with each other. This is defined by xp distance. Once found clients connect

to each other by the message send by the server.

Peer to Peer

In the game we build a peer to peer system. Where we send least amount of data. We send

actions to the players so cheating is hard.

MaliPuty Technical report

Non Functional requirements

Software

All the main software used for the project development. With explanation what role they
played.

Unreal

This is the game engine. All basics of a game are coded here. The programmer works
with it’s APIL. To develop games. It provided the framework for the game.

VMware

A Virtual machine simulator so I can have Linux on top of my Windows. This way I can
code on Linux for the server while I run an Unreal instance for the client. On 1 machine.

Arch-Linux:

I want to have the server running on Linux. Because it is more tested on being a server.
Also arch Linux is the distrobution I use because it is not a desktop distrobution but a server
distrobution.

Emacs

Used to code on the server side.

Visual studio

Used to code in the engine.

Network

For the game we need a functional network over the internet. A server needs to be
running to match making. But then the players should be working by themselves. After this they
should report to the server their status.

Performance

The performance of the game has many aspects to it. First the network is the goal of the

semester. So the goal is to try to get least amount of traffic over the network and efficiently. We

MaliPuty Technical report

try this by thinking of every concept in the game look what is the minimum amount of data
necessary. Next to that when something needs to happen after a time period. We directly send the
message when the timer needs to start. Not when the action needs to happen so latency has least
amount of impact.

Other performance issues are graphical and collision. We take a minimalistic approach to
this. Minimal graphics and use

For code we do the not supported algorithms in c++ like the rps system. If we would be
doing it in blueprints we are less in control of the performance compared to c++. however when
advanced algorithms are build in the blueprint system we use the blueprint version. This saves
hassle and we expect the coders of Epic games to know their own engine better.

Blueprint functions

The considerations when to use blueprints are explained above however we also do this
for support. In unreal tutorials the support for blueprints is high, in order to solve our problems
faster we use blueprints.

Interaction

In the game players interact with the orbs in the level. To pick up place on machine. This
is the main interaction of the players. Next to this they collide with the ground and trees.

Players can show HUD elements with click of buttons. And the HUD responds to the play

in the game.

MaliPuty Technical report

Game Software design

Tells the concept behind general idea of the code written
Software architecture

Coding Style

In code I use own imagened “commenting first” technique. When I write a code I first
write all the comments that describe what the section is going to do. Then I write the rough code.
And refine it based on feedback of the system. 1 line of code can not be responsible for more
then 1 action. Example: can only assign to 1 variable. Brackets {} have their own line. 1 line if
statement or any function line has the execution code on the next line. Also repeated addition.
Like A[N].A+A[N+1].A + A[N+2].C, all get their own line. This way the code does not get

clutterd.

Ccoll = ColB +1;

I for{uintd t rol C= 0;rol_ C<rol RA;rol C++)
//calculates the wvalue of combined xp
closeness = match[0] —> Xp +

match[colB] —> xp +

match[colC] —> xp -

totalxp/2;
closeness = std::abs{closeness);
ffcheck if the composition is more idea

Blueprinting style

Blueprints also follow a style. When code becomes very low level(addition substraction,
base manipulators.) we make a C++ code with a blueprint function that describes the higher level
function.

When a piece of code needs to be repeated some times we put then in a stacking order

like the following

MaliPuty Technical report

Next to that to keep things clean we use redirect nodes however we do not try to make to

many lines cross each other. Next to that we try to keep the execution lines straight. Unless a

branch occurs then we do as example below.

_.:::- Itemchange
" C Branch

SET
» — » True B

SET

> —» -»

Team Red _—® Batile o ___——® Hemid Condition False B ~

Battle @ - —_— ftem Id. @

ltemid @ e Item D Team A =2

Battle @

Item IDTeam B 25— —

Battle @— —

"B Set Integer (by ref)

» »

Target

@ Value

“B= Set Integer (by ref)

» »

Target

ltemid @ ———— @ Value

Systems

RPS system

For the RPS system I generated my own algorithm. There might be an equivalent system

out there. But this is a simple problem so to train my problem solving skills I took the challenge.

Using my own logic.

With the consideration that every object has equal amount of objects it wins from as it

losses . We consider for the check to put item A it's value in the
middle of the range of possibility’s. Check what that velocity is,
move the B value to it as well. And map that value back in range of
the array with the mod function. Then you can check if the value of
B is bigger or smaller then A. and see who wins. Figure: checking

if B is behind or before the Red line.

MaliPuty Technical report

Match Making
If someone comes online and wants to play, we ask for the experience points. We check
what group the person belongs in the XP group fashion to and add 1 to the list of players want to

play in it. Figure a player adds itself to play status his xp is 490 get added to the place: 400-499

0-99 100-199 {200-299 | 300-399 | 400-499 | 500-599 | 600-699 | 700-799 | 800-899 | 900-999

50 12 2 2 1+1=2 |1 4 2 2 1
Now for instance the player wants to play a game. The algorithm checks if there are

enough players in its group. If not the case ti look at its neighbors.
Figure below: checks own group makes 2 players. Player needs 6 players to play so going

to look at it's neighbours.

0-99 100-199 {200-299 | 300-399 |400-499 | 500-599 | 600-699 | 700-799 | 800-899 | 900-999

50 12 2 2 2 1 4 2 2 1
Figure below: checks it first neighbors sees this makes total of 5. still not enoug. So need

to look further

0-99 100-199 [200-299 400-499 600-699 | 700-799 | 800-899 |900-999

50 12 2 4 2 2 1

II

Now it looks 1 futher. Sees there are total 11 people online in range that is enough to play
the game. He starts looking at who first logged in and once one is fitting the group he adds it to

the play list.

0-99 100-199 700-799 | 800-899 | 900-999

50 12 2 2 1
He starts at the first logged in. then moves allong the list of connected. That order is de-

400-499

il

termined by FIFO. When he finds a players that fits the range he add it to the list. Until they are

with 6 players.

MaliPuty Technical report

Team creation

When team creation it is ideal to have both teams equal amount of experience points. We

do this by checking every option of team combination. However I am not going to look at whole

team composition. I just do 1 team starting with 1 standard person this person is fixed. This

person get checked with every other players. And find out if the total experience of the team is

closest to the middle. The closer to the middle of the total experience of the matched players. The

more ideal the team compositions are. The server checks every option once by setting player 1

stuck then checks it together with player 2 and every other player. Then checks with player 3 in

slot and checks 4-6. example:

1 =432 2=3243 =545 5=564 6 =468

ideal = 1369,5

1 2 3 1301 -68,5 1301
1 2 4 1162 -207,5 1301
1 2 5 1320 -49,5 1320
1 2 6 1224 -145,5 1320
1 3 4 1383 13,5 1383
1 3 5 1541 171,5 1383
1 3 6 1445 75,5 1383
1 4 5 1402 32,5 1383
1 4 5 1306 -63,5 1383
1 5 6 1464 94,5 1383

As the other team is the mirror this should result in testing every option. Now you only

replace the teammember in mind with the ideal team member if the next option is better. Ideal

here would be 1 with 3 and 4. this gives the other team 1356. very close to eachother.

Server handling

Server handels a fifo system when one logs in it gets on the end of the list. And when

match making it checks the first in the list if it wants a match.

MaliPuty Technical report

Game software programming

Shows the code and then explain what the code is responsible for.

Blueprints

Machine

The machine uses parent and child blueprints so I do not need to create 6 slots.

The client just is a collision detector when a item is dropt it sends a signal to the main

machine.

"5 Iem Change y

| ——— o
@ NlemM

e 10 Team A 15

Batthe i@

E BB Setinteger (by ref)
" Hem 1T » »

.

Hem il g ———— @ Value

MaliPuty Technical report

then checks with the posing object. You see the c++ code how it get's evaluated.

= RS

Communication (from item till machine)

We use an interface to comminucate between the needed objects. When a class inheriterds
an interface the other knows. And is able to send the int value to the other object, this is used to
move the items around the area.

C++ Blueprints

RPS system

~ f RPSWin

_{ @ Other Team Return Value

'We made a node of this algorithm

@ Your Team

» Range |?|

MaliPuty Technical report

for it to be calleable it need to inherit the parent class “UblueprintFunctionLibrary”.

The function then expected needs to be a static and a UFUNCTION. BlueprintCallable

tFunctionLibrary.h™
\TTERYCOLLECTOR_API URPS : UBlueprintFunctionLibrary
GENERATED_BODY()

UFUNCTION(BlueprintCallable, Category

RPSWin({int32 OtherTeam, int3 ourTeam, int32 Range);

then in the function we can place the code. We first do a bitswift for a division. It has a
few less instructions then division by 2 in assembly. Then make sure the data is in range.

After that it looks how far 1 value is from the middle. And moves the other value. And
checks if the other is more or less in the middle value. We need to do this since we do not know

what the range would be of items. This makes the code flexible for future use.

MaliPuty Technical report

= Middle -
YourTeam = (YourTeam +
(YourTeam < Middle);

C++ Server

Data structure

We make a list of clients. This class is able to modify the list. We start at the beginning of
the list when looking for a match. So we start from beginning to end. This holds data of the

global stats

oo

dian[median_scale] = {0};// a list of median players online based on xp

=d long int players_online =0;
> 1list functions
*getEnd();

i returns it

client *pickf};f!ret urns client.

The client holds it's own ip adress It socket address to send it a message in any time. Name xp
for match making and identity. Hold the next pointer. So it goes trough the list. The team it is

pick towards. And a status is it ready to play

MaliPuty Technical report

//state of the player
enum statuses|
Init,
Idle,
Lobby,
Launching
bi
fidata of client, to find and create matches.
struct client/{
sockaddr_in ip_address;
vold *sock;
unsigned int =xp;
std::string name;

client *next = WULL;// next client in list
unsigned int Team; // assigend to team in match
statuses status = Init;
bi
Match making
Init list:

client *clientList::pick() {
client **match =({client**) std::malloc(sizeof({struct client) * Players);
client *proposal = start -> next;//player currently checked if wanted to hawve
match[0] = start;
for(int i =1; 1 < Players; i++)
match[i] = new client;

f/define range to look at
unsigned int firstP_median = match[0] -> xp / median_sizestep;

unsigned int MaxDistance = 0;
unsigned int players_inrange = median[firstP_median];//ammount of players in range
//checks 1f there are encugh players in range
while (players_inrange < Players) {
MaxDistance +=1;
//catches 1f there are not enough players online
if(firstP_median - MaxDistance <= 0 && firstP_median + MaxDistance >= median_scale) {
std::cout << "not enough players." << std::endl;
players_inrange += Players;

}
/’ if one still in range
if(firstP_median-MaxDistance »>= 0) {
players_inrange += median[(firstP_median-MaxDistance)];
}
if(firstP_median + MaxDistance <= median_scale) {
players_inrange += median[(firstP_median+MaxDistance)];
}
1
f/find close enough xp players based
while (match[Players-1] —-> next != NULL) {
unsigned int proposalmedian = propeosal -> xp / median_sizestep;
int playernum = 1;
//add player if in right group

int distancetoFirst = proposalmedian - firstP_median;
if({unsigned int)std::abs(distancetoFirst) <= MaxDistance) {
match[playernum] = proposal;
playernum++;

1
proposal = proposal —> next;

MaliPuty Technical report

then to match the teams it gives the players the value of what team they are in:

//find xp balance in teams and assign to teams.
uint8_t colB = 1;
uint8_t colC = 2;
f/total value divided by 2. because that is the ideal value.
int closeness;
unsigned int totalxp = 0;
B for(int i=0; i< Players;i++){
totalxp += match[i] -> xp;

t
//test every combination
unsigned int old= -1;//this hold the value that is the closest to 0 for finding th idea
i1 match.
uint8_t IdealB;
uint8_t IdealC;
for(uint8_t rol A = Players/2+1; rol_A>0; rol_A—-){
colC = colB +1;
for{uint8_t rol C= 0;rol_C<rol_A;rol_C++){
//calculates the value of combined xp
closeness = match[0] -> xp +
match[colB] -> xp +
match[colC] -> xp -
totalxp/2;
closeness = std::abs(closeness);
//check if the composition is more ideal then previews situations
ned int)closeness < old)
IdealB = colB;
IdealC = colC;

t
//assign people to the teams
match[0] -> Team = 0;

for(int i = 1; 1 < Players; i++){
if(i == IdealB || i IdealC) { Threads
match[i] -> Team
}
else|

match[i] -»Team = 1;
}
1

return *match;
After there are enough players online server checks for matches. And send them ip

addresses that fit the scale.

if (playlist.players_online >= Players)

std::cout << "wait" << std::endl;

//make the avarage wait 1 minute for match making

usleep ({(useconds_ft) (playlist.players_online/Players*5000));
std::cout << "play" << std::endl;

client *mat = playlist.pick();

int *Psock, ck;

for(int i = 0; i < Players; i++)

{

std::cout << "guess_s" << std::endl;
Psock = (int*)match[i].sock;
std::cout << "guess_u" << std::endl;
Sock = *Psock;
std::cout << "guess_ << std::endl;
std::string message = "";
//constructs a message
for(int j = 0; j < Players; jt++)

{

LLAE{L3= 1)
£4

std::cout << "guess_a" << std::endl;

/fadd ip to message

message.append("Ip: ");
message.append(inet_ntoa({match([]j].ip_address.sin_addr));
//add name to message

message.append (" MName: ");

message .append (match[j].name)

message.append(" | "};

/7

}

std::cout << "guess_1" << std::endl;
//puts (message.c_str());
write(Sock,message.c_str(),strlen(message.c_str(}));
//playlist.pop{&match([i]};
15
std::cout << "guess_0" << std::endl;
for(int 1 = 0; i < Players; i++)
playlist.pop(&match[il);
std::cout << "guess_1" << std::endl;
free(match);
L

Pt Amin Flha *hrasd an. Phat me -dant Eovmlaabs Batave S S eabhi

MaliPuty Technical report

Threads

Using threads to keep multiple clients responsive
:id.*connection_handler{void *Player)

//Get the socket descriptor

client *player = (client*)Player;
int *Psock =(int+*)player -> sock;
int sock = *Psock;

int read_size;

char *message, client_message[2000];

//5end some messages to the client

message = (char*) "Greetings! I am your connection handler\n";
write(sock , message ,strlen(message));//.length());
message = (char*)"Now type something and i shall repeat what you type \n";

write (sock , message , strlen(message));
//Receive a message from client
while((read_size = recwv(sock , client_message , 2000 , 0)) > 0)
{
//Send the message back to client
if(strncmp (client_message, "play",4) == 0 && strlen(client_message) > 17)
{
std::string Smessage;
message =(char*) ("Wait! ‘n");
write(sock, message, strlen(message));
Smessage.assign(client_message);
player —> xp = atoil(Smessage.substr(5,6).c_str());
player -> name = Smessage.substr(l2);
player —> status = Lobby;
std::cout << player -> Xp <<
" " << player -> name
<< std::endl;

}
else]

write(sock , client_message , strlen{client_message));

1
b

if{read_size == 0)
{
puts("Client disconnected");
delete(player);
fflush(stdout);
t
else if(read_size == -1)
{
perror ("recv failed");
}
//Free the socket pointer
free (Psock);

return 0;

	Abstract
	Maliputy Technical Report
	Game Software Requirements
	Functional requirement
	Gameplay
	Feedback
	Server Client
	Peer to Peer

	Non Functional requirements
	Software
	Unreal
	VMware
	Arch-Linux:
	Emacs
	Visual studio

	Network
	Performance
	Blueprint functions
	Interaction

	Game Software design
	Software architecture
	Coding Style
	Blueprinting style
	Next to that to keep things clean we use redirect nodes however we do not try to make to many lines cross each other. Next to that we try to keep the execution lines straight. Unless a branch occurs then we do as example below.

	Systems
	RPS system
	Match Making
	Team creation
	Server handling

	Game software programming
	Blueprints
	Machine
	Communication (from item till machine)

	C++ Blueprints
	RPS system

	C++ Server
	Data structure
	Match making
	Threads
	Threads

