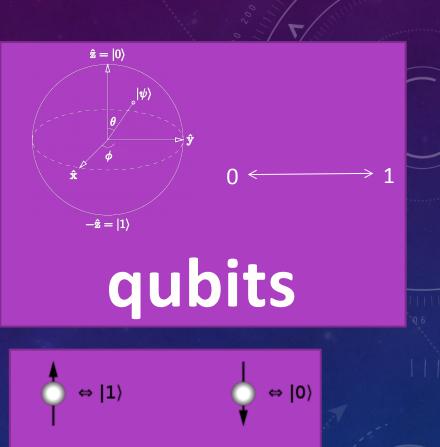

# POST-QUANTUM CRYPTOGRAPHY


MADE BY: ROBIN VAN GRINSVEN.

NHTV/IADE/EUROPEIA

# QUANTUM COMPUTING

- Niels Bohr: "Anyone who is not shocked by quantum theory has not understood it."
- Richard Feynman The Character of Physical Law (Anon 2014) :"If you think you understand quantum mechanics, you don't understand quantum mechanics."
- Runs many questions at once. But once looked gives 1 answer. (parallel paths 1 answer)
- Orientation changers are it manipulators instead of (X)or/(x)and gates
- 50 qubit.



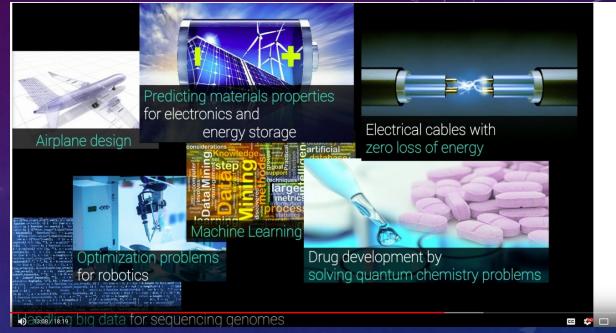


|0101⟩ ⇔ |5⟩

+ |5)

qubits can be in a superposition of all the

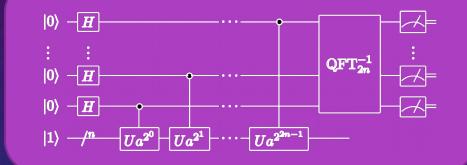
clasically allowed states


## CURRENT PROBLEMS

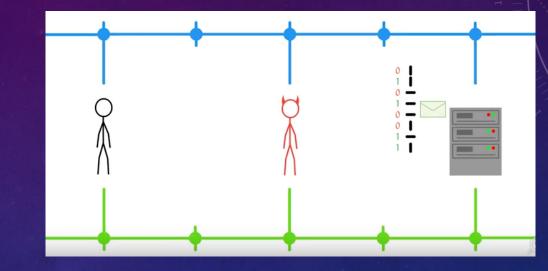
- scalable physically to increase the number of qubits;
- qubits that can be initialized to arbitrary values;
- quantum gates that are faster than decoherence time;
- universal gate set;
- qubits that can be read easily.
- Control 5-10 cubits(2015).
- Currently solve the substitute of 15(5X3).
- Making a quantum computer 2 times faster requires 1 qubit. 2n.

# INDUSTRIES

- Astrophysics.
- Pharmaceuticals/Chemistry.
- Weather forecasting.
- Nanotechnology.
- Any simulation.
- Data base theory.(Grover's Algorithm)
- Encryption/Decryption.
- And anything with these problems:
  - guess answers repeatedly and check them.
  - possible answers are equal to the amount of inputs.
  - Every answer takes equal amount of time to check.







https://www.youtube.com/watch?v=aUuaWVHhx-U

### SHOR'S ALGORITHM

- Peter shor(1994)
- Great for finding the prime factors of a number.(RSA)
- Current performance is 143=11\*13(done on 5 atoms)
- Makes the problem lay in BQP



# QUANTUM DEFENSE



- Quantum to beat quantum
- Exploit the "look" mechanic of quantum
- Need a quantum connection
- Chances are quantum computers will not be in ordinary households.

### CLASSIC COMPUTER DEFENSES

#### implementations

- ring Learning with Errors key exchange
- McEliece cryptosystem
- GoldRiech -Goldwasser- Halevi scheme
- superSingular IdoGeny Diffie helleman key exchange concepts
- Lattice Cryptography
- Multivariate cryptography
- Hash-based cryptography
- Code-based cryptography (1971-encoding)
- Supersingular elliptic curve isogeny cryptography
- Symmetric key quantum resistance

| Algorithm                                           | Туре           | Public Key | Private Key | Signature |
|-----------------------------------------------------|----------------|------------|-------------|-----------|
| NTRU Encrypt <sup>[34]</sup>                        | Lattice        | 6130 B     | 6743 B      |           |
| Streamlined NTRU Prime                              | Lattice        | 1232 B     |             |           |
| Rainbow <sup>[35]</sup>                             | Multivariate   | 124 KB     | 95 KB       |           |
| SPHINCS <sup>[18]</sup>                             | Hash Signature | 1 KB       | 1 KB        | 41 KB     |
| BLISS-II                                            | Lattice        | 7 KB       | 2 KB        | 5 KB      |
| GLP-Variant GLYPH Signature <sup>[10][36]</sup>     | Ring-LWE       | 2 KB       | 0.4 KB      | 1.8 KB    |
| New Hope <sup>[37]</sup>                            | Ring-LWE       | 2 KB       | 2 KB        |           |
| Goppa-based McEliece <sup>[14]</sup>                | Code-based     | 1 MB       | 11.5 KB     |           |
| Random Linear Code based encryption <sup>[38]</sup> | RLCE           | 115 KB     | 3 KB        |           |
| Quasi-cyclic MDPC-based McEliece <sup>[39]</sup>    | Code-based     | 1232 B     | 2464 B      |           |
| SIDH <sup>[40]</sup>                                | Isogeny        | 751 B      | 48 B        |           |
| SIDH (compressed keys) <sup>[41]</sup>              | Isogeny        | 564 B      | 48 B        |           |
| 3072-bit Discrete Log                               | not PQC        | 384 B      | 32 B        |           |
| 256-bit Elliptic Curve                              | not PQC        | 32 B       | 32 B        |           |
|                                                     |                |            |             |           |

### CODE-BASED CRYPTOGRAPHY

- Key size problem pre quantum security 1024 Kb
- Recommended stategery : McEliece with binary Goppa

Parity check matrix (n = 7, k = 4):

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

An error-free string of 7 bits  $\mathbf{b} = (b_0, b_1, b_2, b_3, b_4, b_5, b_6)$  satisfies these three equations:

$$b_0 + b_1 + b_3 + b_4 = 0$$
  

$$b_0 + b_2 + b_3 + b_5 = 0$$
  

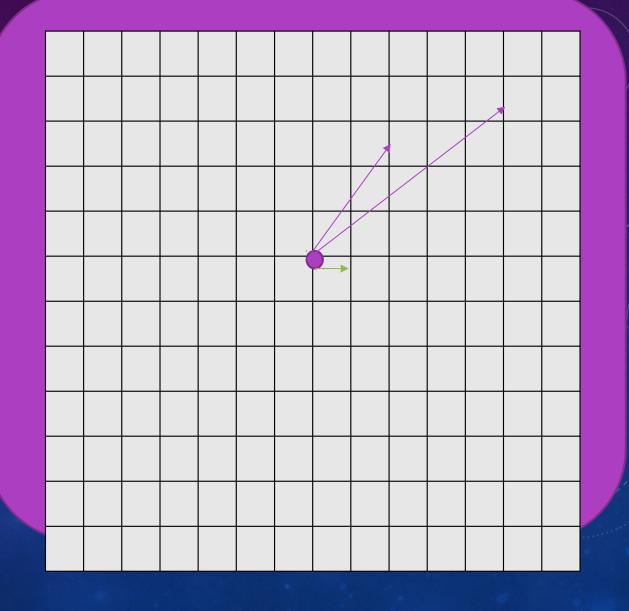
$$b_1 + b_2 + b_3 + b_6 = 0$$

# LWE TECHNIC

- Know to resist quantum computers.
- Part of a solution.
- Inherited in lattice problem

| $P = G^*S + E$ | G = [5,8,12,16,2,6,11,3,7,10]              |
|----------------|--------------------------------------------|
| S = 5          |                                            |
| E = 12         | T =[37, 52, 72, 92, 22, 42, 67, 27, 47,62] |
|                |                                            |
| Message = 12   | Picked values: [ 52,27,92,42,62]           |
|                | 275                                        |

Sum up: 275 Encrypt : sum + message Encrypt : 287


# LATTICE CRYPTOGRAPHY

- Multi dimension geometry based cryptography.
- Shortest vector problem (SVP)
- Closest vector problem(CVP)
- SVP/CVP is know as NP hard.
- NTRU(public key)
- Faster encrypt and decrypt then RSA
- Ideal lattice
- Worst-case

•







### LATTICE CRYPTOGRAPHY

It has the following applications: Public key encryption **CCA-Secure PKE** Identitybased encryption Oblivious transfer Circular secure encryption Leakage resilient encryption Hieracrhical identity based encryption Fully homomorphy encryption(cloud service use) Learning thoery

### HASH-BASED CRYPTOGRAPHY

- Lamport signatures
- Started by ralph merkle in 1970
- Limit amount of numbers of signatures.
- No patent



"Cryptography is a endless battle between the breakers and the builders. Or is it ending?":quote myself.