
Running head: C++ editors Gnu/linux 1

C++ EDITORS GNU/LINUX

Robin van Grinsven

NHTV/IADE/Europia

Disclaimer:

This paper is not on a PHD level of research. Thus, needs to be considered a personal research

paper. A good start for your research. End of this document. You can do an informed decision on

what editor you want to use.

Verbatim copying and distribution of this entire article is permitted in any medium, provided this
notice is preserved

C++ editors Gnu/linux 2

Abstract

In this paper we make factual comparisons between different code environments setups. Since

the possibilities are very wide we scope down the software with few software packages that are

Popular. The packages will be featureful. And need to acknowledge that they are capable of

coding in C++. This paper is developed to help companies decide what code editor to implement

in their workflow. To prevent bias as much as possible the focus is on features, the

implementation of the features and the added benefit of those features. In the conclusion we talk

about the red line of the products the main benefits and main downsides.

Keywords: Coding, Editors, Comparison, IDE, Software

C++ editors Gnu/linux 3

Table of Contents

Abstract..2

C++ EDITORS GNU/LINUX...5

IDE and Text editors..5

IDE's..5

Text editors..5

Unix helping programs..6

Feature comparison..7

File management...7

Code evaluation...8

Text Editing...8

Error handeling..8

Highlights...9

Pro’s..9

Con’s...9

References..10

Footnotes..11

Tables...12

Figures title:...13

C++ editors Gnu/linux 4

C++ EDITORS GNU/LINUX

code editors come in many different shapes. You have IDE’s and Text editors. A IDE is more a

extendented text editor on the features of project management. We discuss both software

packages. Since both can be used. We pick some big features and compare them between the

picked packages.

IDE and Text editors

IDE(Integrated Development environments) and text editors are very similar.

However, the diference is in the design/purpose of the programs. IDE are especially

developed for programming. And make a complete package for the programming tasks.

Everything is build and developed to work together. For the single task of programming in

that langues. In general text editors you fnd that you need to construct multple existng

programs for a good working environment. Thus, more need to confgure.

IDE's

We are going at some IDE’s and some Text editors. The IDE’s are: Code::Blocks, CodeLite,

Eclipse and Mono develop. These are feature-full and open source widely used programs.

Code blocks and Code Lite main focus are C++. Code blocks also has native support for Fortran.

Eclipse is build for Java. However with plugins your can make it work with C++. This editor is

developed for websites

MonoDevelop is developed for working with C#. but again can work with C++. This is used with

the unity game engine.

Text editors

The text editors we go and look at are Emacs, Sublime, Vim and Visual studio code.

We look at emacs because it has the longest lifespan of all the editors. Is highly customizable.

And has many big database of plugins. In essence you can make out of it what you want.

C++ editors Gnu/linux 5

Vim is very close to Emacs however very light weight. And also has a big community. Vim is

more popular then Emacs.

Sublime has a heavy focus on making typing easy. Goes for slick design. It is loved by many

developers.

Lastly visual studio code. This is a striped down visual studio. Just the text editor. So developers

on a Linux machine can have

Unix helping programs.

For Missing features in text editors GNU developed some programs to fll in the

gaps. You wil notce in the future of this document. Some of these tools are build in IDE's

like Code::Blocks

listing these programs are:

GCC/G++: these commands compile the code to machine languages. Gcc to compile c

code and G++ for c++ code.

Make/AutoMake/AutoConf/LibTool : these are Linux tools compile multiple files of one

projects. This is comparable to the sln file in Visual studio and cbp from Code::Blocks. So

Project files.

Chmod + : give the promission in linux to execute the compiled file.

./the_compiled_file_name : executes the file.

GDB/undoDB : debuggers. To analyse code and know what happens in the code.

Objdump/Boomerang/hex-ray/Hopper: decompiler. Makes binear code back to assembly

or c.

Git/Svn/p4: version controllers.

Bison : a Praser generator, warns about parsers ambiguities.

Macro proccesor: m4

C++ editors Gnu/linux 6

Feature comparison

For comparing the tools you can look statistically at the features. Other factors to

consider a program by are documentation, work flow and usability.

File management

When looking at file management we dissect the part of the programs that handles the

project and files. Considering the time spend on managing the project versus working on the

code it self. A good project management leads to more productivity.

A basic feature of securing progress is the auto save . As humans tent to forget to save the

file regularly as well as not want to spend time on this. Because we expect stability of the

system. Nor should the user be concerned about losing progress. As a simple auto save would

solve the issue.

A note should be taken that most of these programs support this in a plugin state. And is

not provided in an as-is. However concerning the Emacs product, it is handled different. In

default when opening a file Emacs copy's the file. This is the buffer autosave file. Whenever you

work in the Emacs buffer(copy of the file in RAM). Every 10 seconds it saves current state to the

buffer autosave file on closing the file Emacs deletes the buffer file. If the file is open on Emacs

programs Auto-save(AS) Overview Header Files ProjectM File Source control

Code::Blocks Plugin Yes Basic .cbp Plugin: svn,git

CodeLite Integrated:
plugin

Yes Full no Plugin:svn,git

Eclipse Plugin Yes No .eclipseproduct Plugin: git

Emacs Change
confg/bufer

No No No VC:git,svn,
plugin: p4v

Mono-develop Yes Yes Basic mdtool svn,git, plugin
p4v

sublime Yes Yes no no git,svn

vim plugin no no no Plugin:
git,svn,p4v

Visual studio code Yes Yes Basic Yes Plugin:
git,P4v
Extern: svn

C++ editors Gnu/linux 7

and the pc crashes and after reboot you open the normal file. Emacs recognizes you still have the

buffer file. And asks if you want to open that. In other programs this procces is also appearend

when you do a file recovery.

Overview of your project files helps navigating trough the file and shows all the files

coupled to your project. Most of the IDE's also have a class browser. Act as the same way. Where

it tree and shows the classes in all.

The generating of header files is really an IDE feature. Since this is a thing only

happening when coding in C or C++. It generates the basis of a header file when creating a new

file for a new class for instance. Eclipse does not have this feature since it is focus on Java. An

other point of interest is the CodeLite feature. CodeLite does not only generate the header file on

creating of a new file. It also keeps it up to date to the current state of the file.

Another feature that is more appear end in IDE's is the feature of the Project management

file. This it the file that saves the connection of all files together including the compile structure.

This is normally the file that used to start up the IDE. Thus sometimes also contains some editor

settings. For visual studio users this is called the sln(solution) file.

For source control most of the time the editor asks for plug-ins. That is because source

control is used over a whole project. Not only the coding side. Thus there are third party

programs that are in need of use. Every company has their own approach so simple plugins are

used by the editors.

C++ editors Gnu/linux 8

Code evaluation

Once the code is written the program needs to be evaluated. On speed, resources, bugs

and efficiency. There are multiple tools for these assignments. All give u other insight on your

code. That this is an important part of development does not need to be addressed. We address

the most used code evaluation features. We see many third party programs here. Or integration of

other proven programs. What you see is that IDE's include the programs during install while text

editors mostly ask extra setups we can notice mono develop has not many of the features.

Compilers GCC is still the most popular. However most of the tools leave you to decide what

you use for a compiler. For Sublime and Vim an external compiler is needed. This means most

likely you need to open a terminal externally and compile it there. For Emacs there is an

exception. It is able to do terminal commands in the editor. Eclipse require plugin that handel it

for the user.

CodeLite outshines at debugging since it is able to debug multi-threading programs. But this

topic has no further outshines

programs Compiler Debugger Profler Disassambler Break point

Code::Blocks MinGW +
custom

GNU GDB Yes yes yes

CodeLite GCC, Clang, VC +
custom

Yes(mult-
threading)

Valgrind LLVM Yes

Eclipse External yes Yes yes yes

Emacs GCC,make,
terminal
interface

GDB GUD Yes(text) External Yes GUD

Mono-develop GCC + custom yes no no no

sublime External plugin no External Yes Xdebug

vim External plugin no External Hard to use

Visual studio
code

own own ? ? ?

C++ editors Gnu/linux 9

Profilers are also more dedicaded to IDE's, notiable is Emacs having it intergrated. And Mono

develop does not. For Visual studio code it get's harder to find the functions because it has a

similar name to it parent Visual studio.

Disassembler are programs that try to make binary files back to a other langues. Most used is

assembly. This makes u able to find what the compiler made out of your code. And read them

back in to instructions. This tool is used for backwards engineering. But also for finding what

your final instructions are on the machine. So you can optimize your code. This is also a feature

some have and some don't.

For breaking point text editors use mostly external programs. And for the IDE's it is intergrated.

Looking at Vim it is seen as a hard implementation. Since you need to intergrate the breaking

point by adding text line In the code file. This leads to clutter and extra clean up steps.

C++ editors Gnu/linux 10

Data interaction

This is mainly the features how you help you develop your code you want. This include text

editing as well as creating a good overview what you code currently is. You see that the text

editors are just as good as the IDE's in these tasks some even better.

For readability in text we indent code to show that is in above function, like a tree. Code editors

reconise when you type a code and know when to expect to put a tab in the code. Emacs has a

special way to handel it. when you press tab on a already typed sentence. It evaluates the code

and fixs it to the code structure. So wont change when it is already right. This helps you spot

syntax errors. However by default it tabs with 2 spaces instead of 4. you can change that in the

config if you want it different.

Find and replace is the function that helps programmers rename their variable names. This is the

most standard feature in editors.

Multi Cursor is a feature that is not used alot. It allow you to type in mutible places in your code.

Good for renaming varibiable or do the same thing in variouse places.

Class browser gives you the ability to look at the code of a class you are calling in a other place

of code. Sublime is able to arch it over to other classes over your whole project.

Sometimes we want the code to have no english spelling error's. Here we use spellcheckers

programs Auto
indent

Find and
replace

Mult
cursor

Class
browser

Mult
window

Spellcheck Auto
completon

Code
folding

Code::Blocks yes yes no Yes yes No yes yes

CodeLite plugin yes Build in yes yes plugin Poor no

Eclipse Yes Yes yes yes yes Yes Yes Yes

Emacs Yes(correc
tve)

Yes Plugin Yes Yes(tle
design)

Yes Yes(iron) yes

Mono-develop Yes Yes No Yes yes No yes ?

sublime Yes yes yes Yes(over
project)

Yes: no
overlaps

Yes yes yes

vim Yes yes plugin plugin Yes Yes yes yes

Visual studio
code

Yes yes Yes yes Yes :no
overlaps

plugin Yes(intelliJ) yes

C++ editors Gnu/linux 11

Multible windows are handy for looking at more then 1 code at once. When you need to know

what is going on in the other code or if you quickly want to switch between code's. Some of the

editors pick that you can not overlap windows over eachother. Because that can lead to clutter on

the screen. For instance emacs use a tile based system when you split the view in 2.

checking spelling errors is handy if you want basic english and readibilty. Or you are bad at

spelling. This can get in the way sometimes. Since we use repesentivies in code like”Pvalue” for

declaring a pointer to a other value. However as come to no suprise the text editors provide a

better support for it then IDE's.

Auto complete is another widely supported feature. However some are more advanced then

others. Some have a narrow field to look for guessing others look at the whole project.

Code folding this is a feature that can be good or bad. What it means that the code that has a

longer line then fit on the screen it start writing on the next line. This can be confusing if you not

notice that the line continues on the next line. And can give a hard read.

C++ editors Gnu/linux 12

Highlights

We describe the most notable points of every program. This does not mean there

are non more.

Pro’s

Code::Blocks: easy fixable editor.

CodeLite: many options for settings.

Eclipse: support for many languages.

Emacs: highly customizable.

Mono-develop: modern look.

Sublime: slick design. Developed for usability and speed.

Vim: most light weight editor.

Visual studio code: very similar to visual studio.

Con’s

Code::Blocks: unstable display of data structure.

CodeLite: no big community compare to other on this list.

Eclipse: no native support for C++

Emacs: take time to set up a good environment.

Mono-develop: low on extra features.

Sublime: is a text editor and only one that cost money. And is closed source.

Vim: shortcut heavy.

Visual studio code: because name is very similar to visual studio. It is hard to find this

product specific info.

C++ editors Gnu/linux 13

References

Last Name, F. M. (Year). Article Title. Journal Title, Pages From - To.

Last Name, F. M. (Year). Book Title. City Name: Publisher Name.

LiveEdu staff (May 23,2016). “10+ Best text editors for Programming 2016/2017”. http://

blog.liveedu.tv/10-best-text-editors-programming-2016/

https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

https://en.wikipedia.org/wiki/List_of_text_editors

https://en.wikipedia.org/wiki/GNU_toolchain

http://codeblocks.org/

https://www.codelite.org/

http://www.eclipse.org/

https://www.gnu.org/software/emacs/

http://www.monodevelop.com/

https://www.sublimetext.com/

http://www.vim.org/

https://code.visualstudio.com/

https://code.visualstudio.com/
http://www.vim.org/
https://www.sublimetext.com/
http://www.monodevelop.com/
https://www.gnu.org/software/emacs/
http://www.eclipse.org/
https://www.codelite.org/
http://codeblocks.org/
https://en.wikipedia.org/wiki/GNU_toolchain
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
http://blog.liveedu.tv/10-best-text-editors-programming-2016/
http://blog.liveedu.tv/10-best-text-editors-programming-2016/

C++ editors Gnu/linux 14

icons :

GNU(gnu not unix) development icon

Aurelio A. Heckert <aurium@gmail.com> - gnu.org

CC BY-SA 2.0This image contains content which may
be subject to trademark laws.
File:Heckert GNU white.svg
Created: 12 December 2005

linux tux pinguin:

Permission details

The copyright holder of this file allows anyone to use it for
any purpose, provided that the copyright holder is properly attributed.
Redistribution, derivative work, commercial use, and all other use is
permitted. Attribution: lewing@isc.tamu.edu Larry Ewing and The
GIMP

Jeremy Kratz - https://github.com/isocpp/logos

Copyrighted free use
File:ISO C++ Logo.svg
Created: 30 January 2017

https://commons.wikimedia.org/wiki/File:ISO_C%2B%2B_Logo.svg
https://github.com/isocpp/logos
https://en.wikipedia.org/wiki/GIMP
https://en.wikipedia.org/wiki/GIMP
mailto:lewing@isc.tamu.edu
https://creativecommons.org/licenses/by-sa/2.0/
http://www.gnu.org/graphics/heckert_gnu.html
http://wiki.colivre.net/Aurium/

	Abstract
	C++ EDITORS GNU/LINUX
	IDE and Text editors
	IDE's
	Text editors
	Unix helping programs.

	Feature comparison
	File management
	Code evaluation
	Data interaction
	This is mainly the features how you help you develop your code you want. This include text editing as well as creating a good overview what you code currently is. You see that the text editors are just as good as the IDE's in these tasks some even better.
	For readability in text we indent code to show that is in above function, like a tree. Code editors reconise when you type a code and know when to expect to put a tab in the code. Emacs has a special way to handel it. when you press tab on a already typed sentence. It evaluates the code and fixs it to the code structure. So wont change when it is already right. This helps you spot syntax errors. However by default it tabs with 2 spaces instead of 4. you can change that in the config if you want it different.

	Highlights
	Pro’s
	Con’s

	References
	icons :
	Permission details

